论文《化学反应工程学习感悟》-仁创编译转载

  • 2020.08.07
  • 公司新闻


  本文为论文分享,仁创编译致力为大家分享更多更好的高质量论文资讯,方便大家学些参考。同时大家也欢迎大家通过转载的方式进行分享,让更多的人能够观看学习,从中获得经验和灵感,小编将为大家提供最新论文资讯。

  化学反应工程课程体系强调与其他课程,如微积分、数值计算、化学动力学、化工原理、传递现象、催化原理和计算机技术的衔接、融合。化学反应速率方程的建立直接依赖于化学动力学;理想反应器和非理想反应器的模型描述需要进行质量衡算和热量衡算,这涉及到传递现象、化工原理的知识;反应器数学模型的解需要用到微积分、数值计算和计算机技术的知识;非均相催化与催化原理密切相关。

  化学反应工程是一门涉及物理化学、化工传递过程、化工热力学、化学动力学、以及生产工艺、环境保护、经济学等知识领域的课程,是一门综合性很强的工程学科。主要研究工业规缕化学反应器中化学反应过程与反应物系质量、热量、动量传递过程即“三传一反”同时进行的物理变化与化学变化的基本规律。在此基础上,探求反应器设计包括装置的型式结构设计、操作条件(参数)的选定及控制、技术经济效果的评价及优化等的基本原理和基本方法。其核心就是对反应装置中的操作过程进行定量的工程学解析。

  对所研究的化学反应,以简化的或近似的数学表达式来表述反应速率和选择率与温度和浓度等的关系。这本来是物理化学的研究领域,但是化学反应工程工作者由于工业实践的需要,在这方面也进行了大量的工作。不同之处是,化学反应工程工作者着重于建立反应速率的定量关系式,而且更多地依赖于实验测定和数据关联。多年来,已发展了一整套动力学实验研究方法,其中包括各种实验用反应器的使用、实验数据的统计处理方法和实验规划方法等。

  对各类常用的反应器内的流动、传热和传质等过程进行理论和实验研究,并力求以数学式予以表达。由于传递过程只是物理的,所以研究时可以避免化学反应,用廉价的模拟物系(如空气、水、砂子等)代替实际反应物系进行实验。这种实验常称为冷态模拟实验,简称冷模实验。传递过程的规律可能因设备尺寸而异,冷模实验所采用的设备应是一系列不同尺寸的装置;为可靠起见,所用设备甚至还包括与工业规模相仿的大型实验装置。各类反应器内的传递过程大都比较复杂,有待更深入地去研究。

  对一个特定反应器内进行的特定的化学反应过程,在其反应动力学模型和反应器传递模型都已确定的条件下,将这些数学模型与物料衡算、热量衡算等方程联立求解,就可以预测反应结果和反应器操作性能。由于实际工业反应过程的复杂性,至今尚不能对所有工业反应过程都建立可供实用的反应动力学模型和反应器传递模型。因此,进行化学反应工程的理论研究时,概括性地提出若干个典型的传递过程。例如:伴随着流动发生的各种不同的混合,如返混、微观混合、滴际混合等;反应过程中的传质和传热,包括反应相外传质和传热(传质和反应相继发生)和反应相内传质和传热(反应和传质同时进行)。然后,对各个典型传递过程逐个地进行研究,忽略其他因素,单独地考察其对不同类型反应结果的影响。例如,对反应相外的传质,理论研究得出其判据为达姆科勒数Dα,并已导出当Dα取不同值时外部传质对反应结果的影响程度。同样,对反应相内的传质,也得出了相应的判据西勒模数。这些理论研究成果构成了本学科内容的重要组成部分。这些成果一般并不一定能够直接用于反应器的设计,但是对于分析判断却有重要的指导意义。

  由于在已选定的工业反应器中进行的宏观化学反应过程,就是具有一定化学动力学特性的反应物系进入具有一定流动和传递特性的工业装置中进行演变、达到人们期预的状之后离开反应器的全过程,整个过程涉及到多种影响参数及各参数之问相互作用的复杂关系。使宏观过程控制到期预状态,达到工程技术目的,实现技术经济目标,必须搞清上述诸多因素或参数对宏观过程、状态及生产(设计)目标的影响规律、调控的可能性及程度、技术经济效果等。在研究或处理方法上,就是在实验(实践)的基础上,用数学模拟的方法即根据反应的动力学特性和该物系在该反应器中的传递特性及流动特性,抓住影响宏观过程的主要矛盾和矛盾的主要方面。恰当地简化处理那些影响不大的次要因素,建立物系的动态物理模型。再对物理模型进行数学描述—建立宏观过程的数学模型,进而根据特定的初始条件、边界条件对数学模型求解,确定有关设计参数以及模拟放大,实践检验,修正完善。显然,该模型就是化学动力学模型、流动模型、传递模型以及相关的参数计算模型的综合。所以建模及解析无疑是各类反应器设计的中心。

  学习的过程要与实际工程联系起来

  例如在返混这一概念的学习中,例如,针对丁二烯氯化制二氯丁烯的开发,根据化学反应工程理论指导认识反应特征,温度效应要求反应器内不出现低温区,否则造成反应选择性差,为使反应器内不出现低温区,最直接的方法是将两种物料各自预热,然后进入反应器。但是丁二烯容易在预热器中发生自聚,造成换热面的污染,使换热器不能长期运转。因此,从工程的角度,不宜采用用原料预热的方式,可利用返混使进入反应器的冷料与反应器中的热料迅速混合,使冷料可以立刻提高温度。正如全混流反应器中提到,充分的返混将使反应器内的各处温度和浓度均匀,并等于反应器的出口浓度好温度。

  工程分析方法是将化学反应工程中诸如返混,传质,传热等物理因素对反应结果的影响,进行分解处理,而后进行工程分析。工业反应器中的化学反应可以分解为物理过程和化学过程。在化学反应过程中,影响反应结果的因素可分为二类:一是与设备大小无关的反应动力学因素,即化学因素,这是过程的个性。每个反应各不相同。二是与设备大小密切相关的传递过程因素,即工程因素,这是过程的共性,同类反应器的传递特性是相同的。不因进行的反应过程而变化。但与反应器大小密切相关。而从本质上看,工程因素对反应结果的影响,是通过流体流动,传质和传热等物理过程。改变了反应场所的浓度和温度分布,再通过反应动力学的特征间接地影响了反应结果。

  反应工程思维方法揭示了上述决策变量对反应结果的影响。实质上是有关工程因素对反应场所温度和浓度的影响,而反应场所的温度和浓度是通过化学反应的温度效应与浓度效应对反应速率,反应选择性产生影响,进而改变了反应结果。因此,我们在教学过程中突出强调反应工程理论思维法运用,强调从分析工程因素的本质入手,针对反应动力学特征来判别工程因素对反应结果的影响,培养采用工程分析法来分析和解决工程问题的能力。只有把握了工程因素本质及反应特征,分析了工程因素对反应结果的影响程度,才能使从反应过程设计和操作上提出优化的工程措施,解决工程问题。

  返混这一工程因素,已经知道返混造成了反应器内浓度的变化,使反应物的浓度降低了,那么对反应结果有何影响呢?对这个问题,我们不能简单地下结论,而要根据反应过程的特征,具体问题具体分析。例如,对串联反应而言,浓度降低总是造成反应选择性的下降,故这一工程因素的影响总是不利的:而对平行反应而言,根据反应选择性的动力学特征,主反应级数低于副反应级数时,浓度降低是有利的,故返混的影响是有利的,而反之则是不利的。又如,对于颗粒催化剂内部传递过程而言,由于传质阻力的存在,使催化剂内部的反应物浓度从外往里呈逐渐降低的态势,而产物浓度的变化则相反。尽管内部传递过程与返混是两个截然不同的工程因素,但只要深入分析,从本质上看,内扩散同样是改变了反应场所的浓度,使反应物浓度降低了,这恰好与返混的结果一样,可以预见,内部传递过程对反应结果的影响,也必然与返混的影响一样。工业反应过程中,影响反应结果的工程因素有返混、予混合、传质和传热等,取决于反应器型式、操作方式、操作条件等决策变量。反应工程思维方法揭示了上述决策变量对反应结果的影响,实质上是有关工程因素对反应场所温度和浓度的影响,而反应场所的温度和浓度是通过化学反应的温度效应与浓度效应对反应速率、反应选择性产生影响,进而改变了反应结果。

  化学工业生产过程包括进行物理变化和化学反应的过程。化学反应过程是生产的关键。在工业规模的化学反应器中,化学反应过程与质量、热量及动量传递过程同时进行。这种化学反应与物理变化过程的综合,称为宏观反应过程。研究宏观反应过程的动力学称为宏观反应动力学。宏观动力学与本征动力学不同之处在于:除了研究化学反应本身以外,还要考虑到质量、热量、动量传递过程对化学反应的交联作用及相互影响。进行宏观反应动力学分析,应注意按相的类别、温度条件和操作方法来分类,多相反应,或称为非均相反应,涉及反应物及生成物在相际的质量传递。变温反应涉及反应物系的相际及与外界的热量传递;而流体的流动特征对质量传递和热量传递有着重大的影响。以宏现动力学为基础,还要进一步对工业反应装置的结构设计墁最佳操作条件的确定控制、放大、优化等进行研究,以期应用于生产实践时获得良好的技术经济效果

  由于化学反应工程涉及多种影响参数及参数之问相互作用的复杂关系,例如化学反应与传质、传热过程的相互交织,连续流动反应器中流体流动状况影响到同一截面反应物的转化率和选择率的不均匀性,化学反应速率与温度的非线性关系等,传统的因次分析和相似方法已不能反映化学反应。工程的基本规律,而必须用数学方法来描述工业反应器中各参数之间的关系,这种数学表达式称为数学模型。有了数学模型,才可能用数学方法来模拟反应过程,这种模拟方法成为数学模拟方法。用数学模拟方法来研究化学反应工程,比传统的经验方法能更好地反映其本质。数学模拟方法的基础是数学模型,数学模型的基础是对多种影响过程特性的分析,又称为物理模型。数学模型处理问题的性质可分为化学动力学模型、流动模型、传递模型、宏观动力学模型。工业反应器中宏观动力学模型是化学动力学模型流动模型及传递模型的综台,是本书所要讨论的核心内容。气—固相催化反应和流—固相非催化反应着重讨论单颗粒固相粒内和相际的宏观反应动力学,气—波相反应则着重讨论液相内的化学反应,其宏观动力学模型是化学动力学模型与传递过程模型的综合,若讨论的是整个反应器。宏观动力学模型还包括l旎动模型在内数学模型的建立是通过实验研究得到的对于客观事物规律性的认识并且在一定条件下进行台理简化的工作。不同的条件下其简化内容是不相同的。各种简化模型是否失真,要通过同规模的科学实验和生产实践去检验和考核,并对原有的模型进行修正,使之更为合理。物理化学中的理想气体定律,化工单元操作中吸收过程的双膜论,都是在一定条件下建立的行之有效的合理的简化模型各种工业反应过程的实际情况是复杂的,尤其是流动反应器内流体和固体的运动状况和多孔固相催化剂及固相反应物内的宏观反应过程,一方面由于对过程还不能全部地观测和了解;另一方面由于数学知识和计算手段的限制,用数学模型来完整地、定量地反映事物全貌目前还不能实现。因此,将宏观反应过程的规律进行去粗取精的加工,根据主要的矛盾和矛盾的主要方面提出一定的模型,并在一定的条件下将过程合理简化,是十分必要的。简化是数学模拟方法的重要环节台理地简化模型要达到以下要求:(1)不失真;(2)能满足应用的要求:(3)能适应实验条件,以便进行模型鉴别和参数估值;(4)能适应现有计算机的能力。

  数学模型大都是各种型式的联立代数方程、常微分方程、偏微分方程或积分方程,这些方程组往往难以求得解析解。但由f近年来发展了各种数值计算方法和电子计算机,给定边界条件和有关热力学数据和操作条件后,在计算机上迅速求取数值解。便于进行多方案评比及优化计算。这些部是数学向化学反应工程渗透而获得的成果通过小型实验所获得的科研成果能迅速可靠地应用于大型工业装置,并综合各方面的有关因素提出优化设计和操作方案。如换热设备,由于其影响因素比较少,其放大及优化还比较易于收效;而反应器由于其中所进行过程涉及化学反应、流动状况、传热及传质等错综复杂、相互关联和非线性的多参数,它的工程放大和优化往往是整个生产系统的工程放大和优化的关键数学模拟放太法比传统的经验方怯能更好地反映反应过程的本质。由于掌握工业反应过程的内在规律,用数学模拟增大法可以增大放大倍数,缩短放大周期,还可以根据数学模拟方法来评比各类反应器的结构及预期所达到的效果,从而寻求反应器的优化设计。数学模型还可以研究反应过程中操作参数改变时反应装置的行为,从而达到操作优化,而某些状态往往是工业中难以实现或具有破坏性质的。因此,数学模拟方法既是进行工程放大和优化设计的基础,也是制订优化操作和控制方案的基础。用数学模拟方法进行工程放大及寻求优化,能否精确地进行预计,决定于数学模型是否失真,也决定过程中各种影响参数间的相互关系的复杂性。反应过程中存在许多复杂因素,建立台适的数学模型并不是轻而易举的事。工业装置中最难以模拟是其中的流体分布和流体流动状况。对于某些参数之间关系复杂的反应系统,从实验装置获得的数学模型,必须通过建立中间试验装置来检验和修正模型,使数学模型更为合理,再将经过修正的数学模型用来进行大型装置的放大设计:投产后,还应从生产实践进一步检验数学模型。

  强调从分析工程因素的本质入手,针对反应动力学特征来判别工程因素对反应结果的影响。培养学生采用工程分析方法来分析和解决工程问题的能力。只有建立正确的数学模型,把握了工程因素本质及反应特征,分析了工程因素对反应结果的影响程度,才能从反应过程设计和操作上提出优化的工程措施,解决工程问题。

  声明:本文转载于网络,并不意味着代表本网站观点或证实其内容的真实性;本站致力于为大家 提供更多,更好的新闻内容。广州仁创编译专业提供医学SCI论文发表,润色协助服务。欢迎咨询合作,我们将竭诚为您服务!

  如果论文成为了您职业学业晋升道路上的拦路虎,请您联系仁创编译,我们会为您提供一站式学术服务解决方案。不管您是有医学SCI论文翻译、润色,还是其他学术编译需求您都可以放心交给我们。致力于科研一站式服务,包含国内普刊中心发表服务,医学SCI论文润色、sci翻译,专利申请,专著出版挂名等等。